Koosha Marashi

Automated Airband Radio

This is a project by KalScott Eng. and aims at design, simulation, and development of an automated airband radio as an initial step towards development of completely autonomous UAVs. This project incorporates location-based database accessing, GPS navigation, and airband radio deployment.
The system uses data from a GPS/IMU device and broadcasts the intent of the UAV to nearby traffic automatically.

Automated Airband Radio

Prototype of Engine Control Unit (ECU)

An engine control unit (ECU) is a type of electronic control unit that determines the amount of fuel and ignition timing that a gasoline engine needs to keep running.
A programmable microcontroller-based ECU is designed and developed for VIVANA vehicle. VIVANA is designed and manufactured by supermileage student design team of Isfahan University of Technology.
This electronic control unit determines the amount of fuel, ignition timing and controls other parameters such as electronic throttle actuator, cooler fan, starter motor, electrical clutch and transmission system modes. It is tried to design this ECU base on AUTOSAR standards.
ECU's typically determine fuel injection and ignition advance time by reading values from multidimensional performance maps which are programmed by an interface software beforehand.
The processing unit of this ECU is an 8-bit AVR microcontroller from Atmel (ATMega128) which has 4KB of embedded E2PROM Memory. ECU could be connected to PC via RS232 for uploading performance maps and monitoring real time engine information.

ECU PCB
ECU Software

Parsa Humanoid Robot Controller Board

Parsa is a kid-size humanoid robot developed in Artificial Inelligence Lab of Isfahan University of Technology. This robot has 20 degree of freedom as well as a CCD image sensor, 3-axis acceleration sensors that detect gravity and 2-axis gyro sensors that detect angular velocity. Parsa is participated in RoboCup Humanoid League and showed impressive capabilities such as coordination with other robots, recognizing environmental features, and playing football.
The central controller board that is mounted on the back of the robot includes battery management circuits, servo motor drivers, PDA connectivity interface, data acquisition for sensors and a memory for boot up sequence routine.

Parsa Humanoid Robot

LynCean Rescue Robot Controller Board

LynCean is a semi-autonomous robot with outstanding capabilities for Urban Search and Rescue (USAR) scenarios. It is small sized, light weight and powerful, and has good stability and proper user interface for utilizing its capabilities. Four independent arms (also known as Flippers) make it able to climb stairs, ramps and many other obstacles. Using a laser range finder and SLAM algorithms, LynCean generates a practical map and sends it to operation site while in disaster arena. It is worth mentioning that the robot is designed and manufactured by the student design team of the robotic center of Isfahan University of Technology and is partially funded by Isfahan Firefighting and Safety Services Organization (IFSO) and Information and Communication Technology Institute (ICTI).
Controller board is an interface between embedded PC on the robot and the physical actuators and sensors. It is mainly based on four Atmel microcontrollers that are interconnected with I2C bus. Each of them has special tasks, classified according to data flows. The main parts of controller board are power management system, brushless and servo motor drivers, serial and analog interfaces for sensors, protection circuits and a serial interface for the connection to the embedded PC. In addition, firmware on microcontrollers includes fuzzy speed controller for brushless motors and data fusion algorithm for localization which is used in map generation.



LynCean Robot
Control Board of LynCean Robot

Wireless Crack Monitoring System

This device is an effective tool for structural health monitoring that measures the growth of cracks on walls. This project was funded by Beh Azmoon Anahita Co. and Iran's Cultural Heritage Organization.
This system includes high resolution displacement sensors which measure very small movements in two orthogonal axes and a wireless communication module to send recorded data to a data logger. The gathered information is then saved on a memory and sent to a server. It uses the widely-available GSM/GPRS network to send monitoring data and alerts to a number of users via FTP and SMS. Temperature and moisture sensors are also embedded in this system.
This module is extremely light weight and works with 2 AAA Alkaline batteries for up to 4 years. Moreover, up to 32 devices can send collected data to one data logger located nearby.

Crack Monitor
Mounted Crack Monitor
Data Logger

Stand-alone Data Logger

This data logger can collect analog data from 10 channels with ultimate resolution of 16 bits in different ranges from thermocouple EMF to voltages up to 10 V or even currents from mA to 1A. It is absolutely accurate due to perfect design and modern equipment. Cold junction compensation is also available for thermocouple channels.
Using the OSD, user can easily work with the device and change its configurations to desired settings. For example, the user can set sampling frequency, input type and range for each channel, data file format and serial interface configurations. The data logger can either save data into an MMC memory or send them to a PC via serial connectivity. The logger can save data on memory in text, MS Word document or MS Excel table formats.

Data Logger

PC-Based Data Acquisition System

This system is an ideal choice for real-time monitoring and analysis of different processes with embedded sensors and also for controlling different types of actuators. The interface of the system is a data acquisition card by Advantech. Signal conditioners with variable gain and offset and also protection circuits, are designed to make the system compatible with a variety of input signals. The computer software that is developed by LabVIEW can also send commands in analog or digital forms. These signals are then amplified by some electronic circuits.
This device has 16 analog input with resolution of 12-bits, 16 digital input, 16 digital output, and two analog output channels. Cold junction compensation for thermocouples is also embedded.

PC-Based DAQ
PC-Based DAQ Software